IEEE Transactions on Cognitive and Developmental Systems: Special issue

CALL FOR PAPERS

IEEE Transactions on Cognitive and Developmental Systems
Special issue on: "Introspective Methods for Reliable Autonomy"
Submission deadline: 31 January 2018

AIM AND SCOPE

As humans, understanding our own limitations, failures and shortcomings is a key for improvement and development. This knowledge is crucial for altering our behaviors, e.g. to execute tasks in a more cautious way. Correspondingly, equipping robots with a set of skills that allows them to assess the quality of their sensory data, internal models, used methods etc. will greatly improve their overall performance. The problem of introspection, directly or indirectly, relates to other research topics: planning, execution monitoring, active perception and mapping. Accordingly, an improved understanding of introspection in robotics has a direct impact on a large variety of application areas (e.g. search and rescue, intralogistic, assistive robotics. The introspection impacts the most the following aspects of robotics system: safety, reliability and the maintenance costs. Information on the internal state of the robot is crucial to make decisions if it is safe to execute the assigned mission considering not only the current state of the perceived
environment, but also the internal state of the robot. Continuous monitoring of the internal state of the robot and automatic assessment can be also used to enhance the maintenance process. Information about the internal state of the robot can be used to estimate the likelihood of potential failure and tailor the efforts to prevent it or to speed up the recovery or repair process by providing detailed information to a human operator or even enable self-repair.
Introspection takes active role in the process of preventing of malfunctions of the robotic system and help to speed the repair process up. These two features have direct impact on the running cost of a robotic system. Preventing unplanned interruptions in the robot operation and shortening the time of the planned interruptions has a direct impact on the cost of robot exploitation.
It is also important to remember that introspective information is a cornerstone of all methods aiming to robotics self-improvement. It provides information crucial in the learning and development process. In this context, it is possible to draw a parallel between human and robotic system. Assessment of the internal state is important input helping to anticipate if the planned action is feasible for the agent (either human or robot). For a complex system, it is difficult to perform such assessment relying only on predefined set of rules and conditions. Therefore, it is necessary to use learning algorithms which will be able to connect the preexisting internal and external conditions with the outcome of a planned action. In such a configuration, a failure became a crucial element of a learning process of an autonomous system.
Finally, it is important to emphasis that introspection is a topic which spans across multiple fields. The introspection is originally a human ability. It is recent years when the idea of
introspection is also becoming present in the field of robotics. Therefore, to obtain a complete picture of the problem of introspection in autonomous systems it is important to have a closer look also at psychological aspect of introspection. Moreover, the impact of introspection in the context of the cognitive science cannot be overlooked.

The primary topic of this issue

How to assess the quality of internal models, methods, sensory data and the hardware used by robots and how to alter their behavior using this information?

The aim of this special issue is fourfold:

* Survey the state of the art in the field.
* Define open research questions in the field.
* Provide a venue to present the recent developments in the field of
introspection.
* Present system papers showing how introspection is integrated and
affects performance of a system.

THEMES

This special issue is addressed to researchers interested in the development of introspective methods for robust autonomy across different research areas. We expect to receive
submissions relevant for following research fields, but to name a few: Long term autonomy, safe operation of robots under uncertanity, performance awareness, reliable-aware operation, cooperative robotics, cognitive and learning robots, developmental robotics, Human-Robot Interaction. Introspection is broad term covering a set of topics.
Topics relevant to this special issue include, but are not limited to:
* Internal assessment (Map quality assessment, Perception quality
assessment, Classification quality assessment)
* Analysis (Failure analysis, Execution monitoring, Meta-reasoning)
* Introspection-related actions (Failure recovery, Reconfigurable
robots, Planning with uncertainty)

IMPORTANT DATES

31 January 2018 - Deadline for manuscript submissions.
15 May 2018 - Notification of authors
15 June 2018 - Deadline for submission of revised manuscripts
31 July 2018 - Final decisions

SUBMISSION

Manuscripts should be prepared according to the Information for Authors of the journal found at http://cis.ieee.org/ieee-transactions-on-cognitive-and-developmental-systems/131-ieee-transactions-on-autonomous-mental-development-information-for-authors.html
and submissions should be made through the IEEE TCDS Manuscript Center at https://mc.manuscriptcentral.com/tcds-ieee selecting the category SI: Introspective Methods for Reliable Autonomy.

AIMS AND SCOPE OF THE JOURNAL

The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.

EDITOR-IN-CHIEF

Yaochu Jin
University of Surrey, Surrey, United Kingdom

GUEST EDITORS

Tomasz Piotr Kucner, Örebro University, Sweden
This email address is being protected from spambots. You need JavaScript enabled to view it.
Soren Schwertfeger, ShanghaiTech University, China
This email address is being protected from spambots. You need JavaScript enabled to view it.
Martin Magnusson, Örebro University, Sweden
This email address is being protected from spambots. You need JavaScript enabled to view it.
Achim J. Lilienthal, Örebro University, Sweden
This email address is being protected from spambots. You need JavaScript enabled to view it.
Rudolph Triebel, Institute of Robotics and Mechatronics, Germany
This email address is being protected from spambots. You need JavaScript enabled to view it.

Easy Links